1. Ali is throwing flat stones onto water, hoping that they will bounce, as illustrated in Fig. 5.

Ali throws one stone from a height of 1.225 m above the water with initial speed $20 \mathrm{~ms}^{-1}$ in a horizontal direction. Air resistance should be neglected.

Fig. 5
i. Find the time it takes for the stone to reach the water.
ii. Find the speed of the stone when it reaches the water and the angle its trajectory makes with the horizontal at this time.
2. Fig. 4 illustrates a situation in which a film is being made. A cannon is fired from the top of a vertical cliff towards a ship out at sea. The director wants the cannon ball to fall just short of the ship so that it appears to be a near-miss. There are actors on the ship so it is important that it is not hit by mistake.

The cannon ball is fired from a height 75 m above the sea with an initial velocity of $20 \mathrm{~ms}^{-1}$ at an angle of 30° above the horizontal. The ship is 90 m from the bottom of the cliff.

Fig. 4
i. The director calculates where the cannon ball will hit the sea, using the standard projectile model and taking the value of g to be $10 \mathrm{~ms}^{-2}$.

Verify that according to this model the cannon ball is in the air for 5 seconds. Show that it hits the water less than 5 m from the ship.
ii. Without doing any further calculations state, with a brief reason, whether the cannon ball would be predicted to travel further from the cliff if the value of g were taken to be $9.8 \mathrm{~ms}^{-2}$.
3. In this question, air resistance should be neglected.

Fig. 2 illustrates the flight of a golf ball. The golf ball is initially on the ground, which is horizontal.

Fig. 2
It is hit and given an initial velocity with components of $15 \mathrm{~ms}^{-1}$ in the horizontal direction and $20 \mathrm{~ms}^{-1}$ in the vertical direction.
i. Find its initial speed.
ii. Find the ball's flight time and range, $R \mathrm{~m}$.
iii.
A. Show that the range is the same if the components of the initial velocity of the ball are $20 \mathrm{~ms}^{-1}$ in the horizontal direction and $15 \mathrm{~ms}^{-1}$ in the vertical direction.
B. State, justifying your answer, whether the range is the same whenever the ball is hit with the same initial speed.
4. A golf ball is hit at an angle of 60° to the horizontal from a point, O , on level horizontal ground. Its initial speed is $20 \mathrm{~m} \mathrm{~s}^{-1}$. The standard projectile model, in which air resistance is neglected, is used to describe the subsequent motion of the golf ball. At time $t s$ the horizontal and vertical components of its displacement from O are denoted by $x \mathrm{~m}$ and $y \mathrm{~m}$.
i. Write down equations for x and y in terms of t.
ii. Hence show that the equation of the trajectory is

$$
y=\sqrt{3} x-0.049 x^{2} .
$$

iii. Find the range of the golf ball.
iv. A bird is hovering at position $(20,16)$.

Find whether the golf ball passes above it, passes below it or hits it.
5. $\quad \mathrm{Mr}$ McGregor is a keen vegetable gardener. A pigeon that eats his vegetables is his great enemy.

One day he sees the pigeon sitting on a small branch of a tree. He takes a stone from the ground and throws it. The trajectory of the stone is in a vertical plane that contains the pigeon. The same vertical plane intersects the window of his house. The situation is illustrated in Fig. 5.

Fig. 5

- The stone is thrown from point O on level ground. Its initial velocity is $15 \mathrm{~ms}^{-1}$ in the horizontal direction and $8 \mathrm{~ms}^{-1}$ in the vertical direction.
- The pigeon is at point P which is 4 m above the ground.
- The house is 22.5 m from O .
- The bottom of the window is 0.8 m above the ground and the window is 1.2 m high.

Show that the stone does not reach the height of the pigeon.
Determine whether the stone hits the window.
6. In this question take $g=10$.

A small stone is projected from a point O with a speed of $26 \mathrm{~ms}^{-1}$ at an angle θ above the horizontal. The initial velocity and part of the path of the stone are shown in 12
Fig. 7. You are given that $\sin \theta=13$. After t seconds the horizontal displacement of the stone from O is x metres and the vertical displacement is y metres.

Fig. 7
(a) Using the standard model for projectile motion,

- show that $y=24 t-5 t^{2}$,
- find an expression for x in terms of t.

The stone passes through point A. Point A is 16 m above the level of O.
(b) Find the two possible horizontal distances of A from O .

A toy balloon is projected from O with the same initial velocity as the small stone. (c) Suggest two ways in which the standard model could be adapted.
7. Arjun is trying to hit a can with a stone. The can is standing on a narrow wall 4 m away from him. The can is
10 cm tall and its base is 1.9 m above the ground, which is level. Arjun throws the stone at the can with a speed of $8 \mathrm{~ms}^{-1}$ at an angle of 35° above the horizontal. The point of projection is 1 m above the ground.

Determine whether the stone hits the can.
8. In this question you should use the standard projectile model with $g=9.8 \mathrm{~ms}^{-2}$.

Fig. 7 illustrates the trajectory of a tennis ball which has been served by a player. It is not drawn to scale.

- The ball must pass over the net and land in the service court.
- The player hits the ball at an angle of a above the horizontal.

Three junior members of a tennis club take turns to serve a tennis ball. They are Hamish (a beginner), Oscar (of medium standard) and Tara (a good player). They each stand at the same point and hit the ball in the same vertical plane at the same point P. The following figures apply to their serves.

- The player hits the ball from a height of 2.22 m .
- The height of the net is 0.995 m .
- The player is 12.5 m from the net.
- The ball must bounce within 6.5 m of the net.

Fig. 7
Hamish serves the ball with components of velocity $10 \mathrm{~m} \mathrm{~s}^{-1}$ horizontally and $5.5 \mathrm{~m} \mathrm{~s}^{-1}$ vertically upwards.
(i) Find the speed of Hamish's serve and the value of α.
(ii) Show that Hamish's serve passes over the net.
(iii) Find the time at which Hamish's serve hits the ground.

Does it land in the service court?

Oscar hits the ball horizontally, so $a=0$. The initial speed of the ball is $u \mathrm{~m} \mathrm{~s}^{-1}$.
(iv) Find the range of possible values of u for which the ball lands in the service court.

Tara serves the ball at an angle of 2° below the horizontal. The ball clears the net and bounces after 0.57 seconds.
(v) Find the initial speed of Tara's serve.
9. In this question, i is a horizontal unit vector and j is a unit vector directed vertically upwards.

A particle is projected from the origin with an initial velocity of $\left(u_{1} \mathbf{i}+u_{\mathbf{z}}\right) \mathrm{ms}^{-1}$, and moves freely under gravity. Its position vector rm at time $t \mathrm{~s}$ is given by

$$
\mathbf{r}=\left(u_{1} \mathbf{i}+u_{\mathbf{j}} \mathbf{j}\right) t-5 f \mathbf{j} .
$$

(a) Write down the value of g used in this model.
(b) Explain what is meant by the statement that g is not a universal constant.

The position vector of the particle when it reaches its maximum height is $(14 i+20 j) m$.
(c) Determine the initial velocity of the particle, giving your answer as a vector.
(d) The particle hits a building which is 21 m away from the origin in the \mathbf{i} direction. Calculate the height above the level of the origin at which the particle hits the building.
10. A pebble is thrown horizontally at $14 \mathrm{~m} \mathrm{~s}^{-1}$ from a window which is 5 m above horizontal ground. The pebble goes over a fence 2 m high d m away from the window as shown in Fig. 9. The origin is on the ground directly below the window with the x-axis horizontal in the direction in which the pebble is thrown and the y-axis vertically upwards.

Fig. 9
(a) Find the time the pebble takes to reach the ground.
(b) Find the cartesian equation of the trajectory of the pebble.
(c) Find the range of possible values for d.
11. A pebble is thrown horizontally at $21 \mathrm{~m} \mathrm{~s}^{-1}$ from a point 1.6 m above level ground. Calculate the horizontal distance travelled by the pebble before it hits the ground.
12. A goalkeeper kicks a football from ground level on a level playing field. The ball is in the air for 3.5 s .
(a) State a modelling assumption in the standard projectile model.
(b) Calculate the vertical component of the initial velocity of the ball.
(c) Calculate the maximum height of the ball.
(d) The ball lands 42 m from its original position. Calculate
(i) the initial speed of the ball,
(ii) the angle that the initial velocity makes with the ground.

Mark scheme

				Motion Under Gravity in Two Dimensions This question was about projectiles and was well answered with many candidates gaining all the marks. Virtually all candidates knew what they were trying to do but many made sign errors in the vertical motion equation. The most straightforward approach to this question involved treating the motion in a single stage. A few candidates considered it in two, or even three, stages; this increased the scope for errors and consequently most such responses were less than perfect. The question ended by asking candidates to comment on the effect of taking a different value for g . This produced a pleasing number of highly articulate responses.	
		Total	7		
3	i	Initial speed is $25 \mathrm{~ms}^{-1}$	B1	Examiner's Comments This question was about a projectile (a golf ball). The horizontal and vertical components of its initial velocity were given. Nearly all candidates were able to find the initial speed and the flight time and range.	
	ii	Vertical motion: $y=20 t-4.9 t$ When $y=0$, $T=(0 \text { or }) \frac{20}{4.9}=4.08 \mathrm{~s}$	M1	Forming an equation or expression for vertical motion	
	ii		M1	Finding t when the height is 0	
			A1		
	ii	$R=15 \times 4.08 \ldots=61.22$	F1	Allow $15 \times$ their T Note If horizontal and vertical components of the initial velocity are interchanged treat it as a misread; if no other errors are present this gives 3 marks.	
	ii	Alternative Using time to maximum height Vertical motion: $v=20-9.8 t$			
	ii				Forming an equation or expression for vertical motion
		Vertical motion: $v=20-9.8 t$ Flight time $=2 \times$ Time to top	M1	Using flight time is twice time to maximum height or equivalent for range.	

\begin{tabular}{|c|c|c|c|c|}
\hline \& \& \begin{tabular}{l}
Height at
\[
x=4:(8 \sin 35)\left(\frac{4}{8 \cos 35}\right)-4.9\left(\frac{4}{8 \cos 35}\right)^{2}+1
\]
\[
=1.975
\] \\
This is between 1.9 and 2.0 so the stone hits the can
\end{tabular} \& A1
E1
[7] \& \begin{tabular}{|l|l}
\hline 1 \& Motion Under Gravity in Two Dimenstons \\
\\
\begin{tabular}{l}
Comment must be supported \\
by evidence
\end{tabular} \&
\end{tabular} \\
\hline \& \& Total \& 7 \& \\
\hline 8 \& i \& \[
\begin{aligned}
\& \text { Initial speed } \left.=\sqrt{10^{2}+5.5^{2}}=11.412 \ldots \text { so } 11.4 \mathrm{~m} \mathrm{~s}-1 \text { (to } 1 \mathrm{dp}\right) \\
\& \alpha=\arctan \left(\frac{5.5}{10}\right)=28.810 \ldots
\end{aligned}
\] \& \begin{tabular}{l}
B1 \\
B1 \\
[2]
\end{tabular} \& \\
\hline \& ii \& Horizontal motion: Time to net \(10 t=12.5\) so 1.25 s
\[
\text { Vertical motion } s=s_{0}+u t+\frac{1}{2} a t^{2}
\]
\[
y=2.22+5.5 \times 1.25-4.9 \times 1.25^{2}
\]
\[
=1.43875
\] \& B1

M1 \& | A complete method for finding the height of the ball when it crosses the net. |
| :--- |
| With the point of projection as the origin for vertical motion, the distance fallen in 1.25 s is 0.78125 m and $2.22-0.78125=1.43875$ | \\

\hline
\end{tabular}

		$\begin{aligned} & \Rightarrow\left(\frac{u}{12.5}\right)^{2}>\left(\frac{4.9}{1.225}\right) \\ & \text { Speed must be greater than } \frac{12.5}{0.5}=25 \mathrm{~m} \mathrm{~s}^{-1} \end{aligned}$ Not going too far To land inside the service court, horizontal distance must not $\begin{aligned} & \quad \Rightarrow 2.22-4.9 \times\left(\frac{19}{u}\right)^{2}<0 \\ & \frac{u}{19}<\sqrt{\frac{4.9}{2.22}} \\ & u<28.227 \end{aligned}$ Maximum speed $=28.227 \ldots \mathrm{~ms}^{-1}$ (So the ball's speed must be between 25 and $28.2 \mathrm{~m} \mathrm{~s}^{-1}$.)	M1 A1 B1 M1 A1 A1 [6]	Motion Under Gravity in Two Dimensions
	v	Vertical motion $s=s_{0}+u t+\frac{1}{2} a t^{2}$ Using u to be the initial speed	M1	An equation for vertical motion which could be used to find u. It must contain all three elements. No sin-cos

				In part (iv) a different player was serving, this time h range of possible values of the initial speed for the essentially the same work as parts (i) to (iii) although component of the initial velocity. However, no guida analyse the situation; a substantial minority of candid those candidates who did come to terms with the stur but many made a mistake with the lower limit, finding without bouncing rather than to pass over the net. In part (v) a third player served with initial direction bes scored any marks on this question and, among tho	on Under Gravity in Two Dimensions orizontally. The question asked candidates to find the serve to land in the service court. This involved the situation was actually simpler with no vertical ance was given and so candidates were required to idates failed to do so and scored no marks. Among situation, some obtained both limits for the initial speed ing the minimum initial speed for the ball to reach the net below the horizontal. Only a minority of candidates se who did, sign errors were quite common.
		Total	18		
9	a	$10\left(\mathrm{~m} \mathrm{~s}^{-2}\right)$	B1(AO 3.4) [1]		
	b	g varies according to location	$\mathrm{B} 1(\mathrm{AO} 1.2)$ [1]		
	c	$v=\left(u_{1} i+u_{2} j\right)-10 t j$ Maximum height when $u_{2}-10 t=0$ $\begin{aligned} & t=\frac{u_{2}}{10} \\ & \left(u_{1} \mathbf{i}+u_{2} \mathbf{j}\right) \frac{u_{2}}{10}-5 \mathbf{j}\left(\frac{u_{2}}{10}\right)^{2}=14 \mathbf{i}+20 \mathbf{j} \end{aligned}$	M1 (AO3.1b) M1 (AO3.1b) A1(AO1.1b) M1 (AO1.1a) A1(AO1.1b) M1 (AO3.1b)	Differentiation of r to find v Equating their j component to zero Equate r with their t to given vector cao, from equating j	

		[0 <]d<11.0 m		Examiner's Comments The question was designed so that the simplest way of the trajectory leading to $x=10.95$. Common sens inequality - the pebble would go over the wall if it we Many candidates went back to the original model, fo to work out the boundary value for d , and received fult	Under Gravity in Two Dimensions answer this was to substitute $y=2$ in the equation was enough to use this as a boundary value for the nearer the window than that value. d the time to drop to the height of the wall, used that credit.
		Total	10		
11		Vertical motion using $u=0$ $\begin{aligned} & \quad s=u t+\frac{1}{2} a t^{2} \\ & \quad \Rightarrow t=\frac{4}{7} \\ & \text { Usith } s=-1.6 \text { to find } t \\ & -1.6=-4.9 t^{2} \\ & \text { Horizontal distance is } \\ & 21 \times \frac{4}{7}=12_{\mathrm{m}} \end{aligned}$	M1 (AO 3.3) M1 (AO 3.1b) A1 (AO 1.1) B1 (AO 1.1) [4]	May be implied For complete method to find t Allow for 0.571 or better FT their t, dependent on 2 nd M mark	Allow $+s$ with $+a$
		Total	4		
12	a	Resistance to the motion is modelled as being negligible	B1 (AO 3.3)	Or similar Or any correct assumption e.g. motion is in a vertical plane; football is modelled as a	

| | Angle θ with horizontal is given by
 $\tan \theta=\frac{17.15}{12}$
 (ii)
 Angle with horizontal is 55.0° | | |
| :--- | :--- | :--- | :--- | :--- | :--- |

